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Abstract. Nonholonomic systems on Lie groups with a left-invariant Lagrangian and a right-
invariant nonintegrable distribution are studied. A method for construction of the first integrals is
given. It is applied to three-dimensional Lie groups and to the four-dimensional nonholonomic
rigid body motion. New integrable problems with an invariant measure are obtained.

0. Introduction

Some of the most interesting remarks about nonholonomic systems were given long ago by
Chaplygin. He noticed that some systems, although not Hamiltonian, had an invariant measure.
Then, ifthe phase space is foliated with the two-dimensional invariant manifolds, the equations
of motion can be integrated by quadratures according to the Jacobi theorem. Some of those
solvable systems are very close to the integrable Hamiltonian systems: the motion is unevenly
winding over the two-dimensional tori. The review of integrable examples can be found in
[1,11].

In this paper, we are going to consider nonholonomic systems on Lie groups with a left-
invariant Lagrangian and a right-invariant nonholonomic distribution (LR systems) [7, 15]. In
section 1 we shall set the notation. A method for the construction of the integrals of an LR
system by using the invariants of the co-adjoint action is given in section 2. Both homogeneous
and nonhomogeneous constraints are considered. These results are used for the construction
of new integrable LR systems with an invariant measure on the three-dimensional groups in
section 3. In section 4, we consider the LR systems$ori4). Explicit formulae are given
for the conservation laws of the four-dimensional nonholonomic rigid body motion.

Let us note that nonholonomic systems on Lie groups with left-invariant constraints also
appear in natural mechanical problems [7-9]. The equations of motion of a mechanical
nonholonomic system are not equivalent to the equations obtained from a nonholonomic
variational problem. The variational problems on Lie groups have been studied in [14].

1. Nonholonomic LR systems

The LR systems have been introduced in [15]. A descriptive and motivating example is the
Veselov—\Veselova rigid body problem. Another important example is the Chaplygin problem
of the rolling of a balanced, dynamically asymmetric ball on a rough surface [4].

Example 1.1. The Veselov—-Veselova problem represents the rotation of a rigid body fixed at
a point with the constralntN SZ) = 0 where$2 is the angular velocity and/ is a constant
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vector in the fixed reference frame [15]. Liebe the inertia operator. The equations of motion
under inertia in body coordinates are

M=MxQ+\N  N=NxQ (N, Q)

gy o =0 ®
A= (N,AN)"Y (M x AM, AN) M=1IQ A=T1"1

The motion is unevenly winding over the two-dimensional invariant tori. Also, the integrability
remains even after addition of a symmetric gyroscope (tfea- 12 + P) [15]. Fedorov
extended the integration of the equations (1) to the case of the nonhomogeneous constraint
(N, Q) =q [6].

Definition 1.1. The LR system is the nonholonomic Lagrangian systeni., D) whereG is
the n-dimensional Lie groupL is the left-invariant Lagrangian an@® C TG is the right-
invariant (n — k)-dimensional nonintegrable distribution.

The distribution can be given by tikéndependent right-invariant one-forms € AX(G)
in the following way:

D, ={§ € T,G, (a}.§) =0, (Ry)*ay =n' =const i =1,....k <n}

where (,) denotes the pairing between t&'G and 7,G, and R, denotes the right
multiplication with g, R,(a) = ag, a € G. The distribution is nonintegrable if and only
if [D, D] ¢ D, whereD = D,.

The admissible paths satisfy, in general, nonhomogeneous right-invariant constraints
(a;, g) = q' = const. Ifg(¢) isasmooth path i, we introduce as usugl(r) = (Lg1).gM)a
smooth pathin Lie algebi@ = 7,G andN'(t) = (Lg)*oz;(t) = Ad;,lni € G*. Inthis notation
the constraints become

(o, &) = (@, (L)) = (n', Ad,Q) = (N', Q) = ¢' i=1... k.
The equations of motion are derived frahe d’Alembert—Lagrange principle

daL aL ; P P

E@_@ZZA"% (g, 8)=q" i=1,....k (2)

where the Lagrange multipliess are chosen such thatg, 2) = ¢q' = const.

We shall take the Lagrangian as the sum of the kinetic energy and the gyroscopic term.
It can be written in the fornL. = 2(IQ, Q) + (P, Q), whereP € G* and] : G — G*
is the symmetric positive definite operator which defines the left-invariant metric. Let
A=11:G*—> GandM =3dL/aQ =IQ + P.

The equations of motion are reduced to

M = adyM +> 3N’
N' = adN' )
(N, Q) =4 i=1,...,k Q=AM — P).

In particular, forG = SO (3) equations (3 take the form (1).

Recall that a Lie groug is calledunimodularif it has a two-side invariant measure. The
criterion for a group to be unimodular is that the structural constants of its Lie algebra satisfy
the equationy", C¥ = O for alli. The Lie algebra is also callashimodular

The important characteristic of LR systems on unimodular groups is the existence of an
invariant measure. Then, equation$) (2ave the invariant measugg(N)dM dN*. .. dN*,

whereu(N) = /det(Ni, ANJ) [16].
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2. The first integrals

In this section we shall consider the LR systems with one constraint:

(ag,8) =(N,Q) =g¢q [D,D]=¢6 D={®ecg, (n,0) =0}
in the presence of an additional force with potential= V(g). Then the Lagrangian
is L = %(IQ, Q) + (P, Q) — V(g). Suppose thaV is a G,-invariant function, where
n = (Ry)*a = const andG, = {g € G, Ad*,n = n}. ThenV(g) induces a well-
defined functionUU (N) on the orbit of the co-adjoint actio®(n) Cc G*: U(N) = V(g),
N = Ad;f,ln € O(n). An example is the gravity potential in a rigid body motion.

If we considem as variable parametdy,(N) becomes the function of*. We shall use
such functions as potentials. In the spaee= G*{M} x G*{N} the reduced equations of
motion take the following form [16]:

M = adiM +adi; N + AN

N =adiN

(N,Q) =¢q Q=AM - P)

A =—(N,AN) YadiM +ad};N, AN).
The adding of the potential has no influence to the existence of an invariant measure. Detailed
derivations of equations (3) without constraint are given in [13]. These are the Euler—Roincar
equations for the semidirect product of the grarjand its Lie algebrg.

We are interested in the construction of the integrals of equations (3). Recall that a function
J . G* — R is an invariant of co-adjoint action if it satisfies

(M,[dJ(M),B]) =0 forall Meg*, ©®egd. 4)
Lemmaz2.l.If J : G* — R is an invariant onG*, thenJy(M, N) = J(N) is an integral
o_f equations (3). For the Hamiltoniat? (M, N) = %(M — P,Q) + U(N), we have
H = A(N, Q) = Aq. Itis preserved only when the constraint is homogenegus:0.

Lemma 2.2. (i) Let J : G* — R be an invariant org* of the formJ (M) = ®(M, M), where
® is a symmetric 2-tensor. Then along the trajectories of the system (3) the following holds:

®3)

%CD(M, N) = A®(N, N).

(i) If J is of the formJ (M) = (M, n), n € G then

d

Proof. Let (e1, ..., e,) be a base of the algebgawith structural constant@l.kj: [ei, e;] =
ijek. Introducing the coordinated; = (M, e;), Ni = (N, ex), Q = QFe,, equations (3)
become
My = CL M;Q +C! N2V N
Jki jk laNj k

Ny = Ci N, @/ @)
NQ =g Q' = AY(M; — P)).

The derivative ofd (N, M) = &/ N; M; along the trajectory is

d i j ks i U kg kg i J dke

3 OOV M) = C M QI N, +kaNia_1\/,»® Ny + AN @ N, + CL N QT Dk M,

o W
= Q/(Cl @"{M; Ny + N;M,}) + a_M(c;kagN,-Ng) +AJ(N). (5)
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SinceJ (M) is an invariant, equation (4) gives
Y , :
chkM,-a—Mkzo j=1,...n. &)
From (4) we get
Y ch oMM, =0 j=1...n. (6)

The tensorM; M, is symmetric ini, g. Hence from (6) the sur_ Cj.kcb"g has to be anti-
symmetric ini, g for all j = 1,...n. Then the first and the second sums in (5) are equal to
zero as products of a symmetric and an anti-symmetric tensor in indiges

In the second case, wheiiM) = (M, n) = Myn* we have

d ‘ . U
— (M, n) = CLn*{M; Q) + N;——} + AN n~.
dr( n = Cjn { aNj} 3

The equations (3 give Cj.kn" = 0 foralli, j. This proves the second part of the lemmal
From lemmas 2.1 and 2.2 we can get the following theorem.

Theorem 2.1.(i) Let J : G* — R be an invariant org* of the formJ = ®(M, M), whered
is a symmetric 2-tensor. Then equations (3) have the first integrals

J1=®(N,N)
Jo = O(N, N)(%(M —P,Q)+U(N)) —P(M,N)(N, Q).

In the case whel/ (N) = 0 we have the four-degree polynomial integral
Js= (M, M)®(N, N) — &(M, N)2.
(i) If J is of the formJ = (M, n), n € G then the integrals are

le (Nv 77)
Jo=(N.mGM —P,Q)+UN)) — (M, n)(N, Q).

Remark 2.1. The conservation laws of the nonreduced system (2) can be obtained from the
nonholonomic Noether theorem [1, 3, 7].

Suppose thaV is a K -invariant function, wher&k C G acts by left multiplication on
G. The infinitesimal generator of the actionig(g) = (R,).Y, whereY € K = T.K.
The momentum of the system relative to the Lie graags, by definition, the mapping:
TG — K*:

. dL LOL i

7@ gl == w@ ) =|(R)"—.Y ) = (Ad;M,Y) M=1IQ+P.
0g dg 8

Let K’ ¢ K be the maximal subgroup whose action is consistent with the constraints:

vy(g) € Dy, g € G, Y € K' = T.K'. Then, we havéa(g), vy(g)) = ((g), (Rg):Y) =

(n,Y) = 0, which implies that’ = £ N D. From the Noether theorem follows that

J (g, 8) = (Ad;M)|xnp is the integral of the system (2).
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3. LR systems on three-dimensional groups

Let us recall the well known classification of the three-dimensional unimodular Lie algebras.
Let (e, e2, e3) be a base of such algebra. Then, up to an isomorphism, there are only the
following unimodular algebras (see, for example, [14]):

(i) the algebra of the X 3 skew-symmetric matrice® (3, R): [e1, e2] = e3, [e2, 3] = €1,

[es, e1] = e2;
(i) the algebra of the Z 2 matrices with zero tracd (2, R): [e1, e2] = —e3, [e1, e3] = 2e1,
[e2, €3] = —2e2;

(iii) the Heisenberg algebria [e1, e2] = e3, [e1, e3] = [e2, e3] = O;
(iv) the commutative algebra3): [e;, e;] = 0.

There are no nonintegrable right(left)-invariant distributions on the groups corresponding
to the commutative algebrd3). So, the nonholonomic LR systems with an invariant measure
appear on three-dimensional groupsn the cases (i), (ii) or (iii).

In [16] it was proved that in the six-dimensional phase spAt€ the motion under
inertia with a homogeneous constraint acts over the two-dimensional invariant surfaces. It can
be solved by quadratures using the Jacobi theorem.

We shall consider the case of a nonhomogeneous constraint in the additional potential force
field (equations (3)). In the six-dimensional spaegM, N} we have an invariant measure
and the constraintV, ) = ¢. Thus we need three integrals of motion for the complete
integrability of the system (3).

(i) G =503, R). LetU(N) = 0. From theorem 2.1 we get the well known integrals of
the equations (1) [6, 15]:

Ny
Il

N, N)M — P, Q) — (N, M}(N, ) (7)
Js=(N,N)(M, M) — (M, N)*.
The integrable potential perturbations of the equations (1) were given in [5, 15].
(i) G = s1(2, R). In the base (ii) the motion has the following form:

My = M3Q? — 2M Q% + N3ﬂ - 2N1£ + AN,
N> dN3
- 5 N U U
Mo = 2M,Q° — M3Q™ + 2No—— — N3—— + AN,
9N3 N,
. U U
M3 = 2M1 QY — 2M>Q% + 2N; —— — 2Np—— + AN
3 1 2 18N1 28N2 3 (8)

N1 = N3Q? — 2N; Q8

Ny = 2N,23 — NaQ*

N3 = 2N1Q* — 2N, Q2

N1QY+ NoQ% + N33 = ¢ Q' = AY(M; — P)).
An invariant of the co-adjoint action is(M) = 4M1 M, + M32. We always have two integrals
of equations (8):
Ji1 = 4NN + N
Jo = Ji(N)(3(M — P, Q) + U(N)) — (N, Q)(2M2N1 + 2Na M1 + M3N3).
In the casd/ (N) = 0, the problem is integrable. From theorem 2.1 we have the third integral

Jz = (4NN + N2)(4MyMa + M3) — (2MaNy + 2NaMy + M3N3)?.  (10)

9)
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The integrable potential perturbations can be found by the method from [5]. Looking for the
potentialsl/ (N) for which there exists an integral of the forfla = J3 + V(N) we can get the
following theorem.

Theorem 3.1. Equations (8) are integrable for the potential
2 2 2
<4Nl +alle £>
2 ao al as

whereA = diag(as, az, az) and P = 0. The third integral is

~ N2 N2 N2
13213+4e(4N1N2+N§)< L4 2 43 )
azas ajas aias

whereJs is given by (10).

Remark 3.1. The funct|on2(4 + 4N2 + NS) is the analogue of the Klebsch-Tisserand
potential in a rigid body motion. “With such a potential problem (8) is integrable even without
the nonholonomic constraint.

(iii) G = h. In the base (iii) equations (3) and integrdis J, are:
. oU
My = —M3Q% — N3—— + AN
1 3 33N2 1

My = M3Q + N. ou + AN
2 = 3 33N 2

1 (11)
M3 = AN3
Ny = —N3Q? No = N3Q*t N3=0
N1iQL+ NoQ2+ N3P =g Q' = AY(M; — P))
J1= N3

12
= N3(3(M — P, Q)) + U(N)) — M3(N, Q). (12)

LetU(N) = 0. Contrary to the previous examples, theorem 2.1 does not give the third integral.
However, we have

d A :

a(N, AN) = 2N3(Q*AZ N; — Q2AY N)) (13)

d 4 .

a(N, Q) = A(N, AN) + M3(Q*AZ N, — Q?AYN;) = 0. (14)
From (13) and (14) using/s = A N3 we obtain

. d d

(N, AN)~ l—(N AN) +2M;* i — M5 = ” — In{M2(N, AN)} = 0. (15)
From (15) we get the third integral

J3 = M2(N, AN).

5 (16)

Thus equations (11) can be solved by quadratures.
We shall give a sketch of the integration in the case of homogeneous consfrainf
andA = diag(as, a2, az). Then equations (11) take the form
Ml = —ayM3M, + ANy M2 = a1M3zM1 + AN> Mg = AN3
N1 = —a;N3M5 Nz = a1NsM; N3=0 (11)
a1N1Mq1 + a;NoM>o + azN3 M3 = 0.
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The invariant surfaces

a1N1Mq + a;NoMo + azN3M3z =0 N3=n

M2(ayN? + ayN2? + azN3) = g atM? + a;M2 + azM2? = h
are diffeomorphic to a cylindes* x R*.

We can introduce new variablesandv by the formulaeu = a3 N7 + a;N7 +agN2, v =
M1N>— N1M>. From equations (I)lwe obtain the equations ferandv: u = 2ajav, v = nh,
which can be easily solved. From the equationf¥ywe haveMs = —ajanv(t) M3/u(t).
Sinceu(r) andv(r) are known functions of time, we can géf (7). Finally, from (12) we can
find M (r) andN(z).

Also, we have the following generalization.

Theorem 3.2.1f the potentialU (N) satisfies the equation
A% N;9U /N, = A¥N;0U/dN-
then equations (11) are integrable. The third integral is given by (16).
An example of an integrable potentialig N) = (N, AN).

(12)

4. The nonholonomic motion of a four-dimensional rigid body

In this section we shall find the conservation laws of the four-dimensional nhonholonomic rigid
body motions. The configuration space ofiadimensional rigid body fixed ata point§® (n):

g € SO(n) maps the frame attached to the b¢ey= (1,0,...,0),...,e, = (0,...,0,1)"}

to the fixed framgvy = (v1g, ..., v1)", ..., Uy = (Wp1, ..., Uan)'} (g = (v1, ..., v,)" and

v; = g'¢;). The matrixQ® = Q = g~1g is the angular velocity of the body relative to the
moving frame, an®*® = gg~! = gQgtis the angular velocity of the body in the fixed frame.

The orthonormal base with respect to the Killing form of the Lie algebra)

(Q1, ) = =5 (1)
consists ofthe matricege; ne;, 1 < i < j < n}wherexAy = x®y—y®x = xy'—yx’. The
Killing form allows the identificatiorso(n)* = so(n). With this identification the operation
ad* becomes the commutator of the algebra, taken with a minus sign.

Following [7], we shall consider the four-dimensional generalizations of the Veselov—
Veselova problem (1). Instead of the rotations about an axis in the three-dimensional case,
for the multidimensional rigid body motion we can consider rotations in the two-dimensional
planes. Let us note that we can see the matrigesv; € so(n) as oriented two-dimensional
planes inR". _

In (1) the projection of the angular velocify to the vector in the spack is constant.

This implies that infinitesimal rotations of the body in the plane are constant. By analogy,
let the infinitesimal rotations of the body in the planes\ v; be fixed, where; Av; (i < j)
belong to the&-dimensional subspadé C so(4)

V = Spar{v; Avj, @, j) eV} Vci{l,23,4) x{1,23,4) V] =k.
The corresponding right-invariant nonholonomic constraints are
Q= (einej, Q') = (e; Aej, gQg™Y) = (v Avj, Q) =gy @, j)ev (17)

where we used; A v; = g'e;(g'e;) — g'e;(g'e;))’ = g te; A e;g. The equations of motion
(2), after the identificationo(4)* = so(4), take the form:

d
EM = [M, Q]+Z)»,»jv,< A Vj

d
E(vi/\vj)z[v,-/\vj,ﬂ] (18)

(vi ANvj, Q) = qij i, j)ev
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whereM = ZQ is the angular momentum of the body in the moving frame. The inertia
operatorZ has the fornZQ = JQ + QJ whereJ = diag(Jy, J2, J3, J4) is the mass tensor
[7,12].

In the case of a dynamically symmetric rigid body, the integrability follows
straightforwardly. From now on we shall suppose that cId,,) (¢ = const).

There are two functionally independent invariantsso): I1(M) = (M, M), I,(M) =
(R(M), M), where the operataR : e; Ae; — Y rijirjer Aej is defined byipss = ras12 =
11423 = 12314 = 1, 71324 = 12413 = —1; the rest Oi'ij,i’j’ are equal to zero. In a similar way
as in section 2, we can prove the following lemma.

Lemma 4.1.Let®(M, M) be an invariant org* (® is symmetric 2-tensor) and l1éf (M) =
%(M — P, Q) be the Hamiltonian, then for the equatior®) e have the following relations:
(i) SN, N)=0

(i) SOM. M) =23 ;1;®(M,N’)

(i) SHM) =3 ;4N Q) =3 rq’

(iv) $OM,N) =3, 7;®(N/, N).

From lemma 4.1 (i) we get the geometric integrals
X,’j’,‘/jf ES (U,’ A vj, Uy A Uj/) Y,’j’,"jf = (R(U,‘ VAN Uj), Vir N\ Ujf) (l, ]), (i/, ]/) e V.

(19)
We can takeX,‘jJ‘/j/ = Bij,i’j’ anle‘j’ij = Tij,i'j-
Theorem4.1.()LetV = Vo @ V1@ Vo, Vi ® Vo = VN R(V), Vo = R(V1). The following
functions are integrals of the four-dimensional nonholonomic rigid body motion (18):
Z,’j:(R(M),U,’/\Uj) Vi NV € Vo
Jh=(M,Q) -2 Z (vi Ay, Q) (v Avj, M)

v AV €V

Jo=(M,M)— > (M, v Av;))? (20)
viAv;EV

Js=(R(M), M)+ (M, M) — > ((ROM), v; Avj) + (M, v; Av;))°.

v,-/\v,-eVOEBVl

(i) In the (6k + 6)-dimensional spaceo(4{M} x  jev so(D{v; A v;} the invariant surface
given by the constraints (17) and integrals (19), (20):

Xijirj = Sijirjr Yijij = rijiy Zij = zij Ji = Ji (21)
is five-dimensional.

Sketch of proof. The first part of the theorem follows from lemma 4.1 (ii)—(iv). For the second
part, a careful analyses should be done dependirig-emdimV and dimVp.

Remark 4.1. The integrability of system (18) is an open problem. However, there are
integrable subsystems, similar to the three-dimensional problem (1).

Lemma 4.2. If the constraints (17) are homogeneous and for s@ipejp) € V the initial
conditions satisfy

Mkl = (vio A vjo)k] =0 (k7 l) = (17 4)7 (25 4)a (35 4)
(vi Avj)u =0 k,1)=(1,2),(1,3),(2.3 (i, j) €V = {(io, jo)}-

Then, the motion of the four-dimensional nonholonomic rigid body problem (18) is unevenly
winding over the invariant tori and could be integrated by quadratures.

(22)
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Proof. It could be proved that the submanifold given by (21), (22) is the two-dimensional
invariant surface of equations (18). Since the connected component of the invariant surface is
compact, and since foly # 0 equations (18) do not have a singularity on the invariant surface,
the lemma follows from the theorem about integration of the nonholonomic system with an
invariant measure (see [1]). |

Maybe, one of the possible ways of proving the complete integrability is the construction
of the L—A pair, as in the free rigid body motion [10]. The following crucial remark is due to
Kozlov and Fedorov [7]. Considering tiredimensional case, they wrote equations (18) with
YV =Vkr =1{G, j), 2<i < j < n}, inan equivalent commutative form:

0=1[0,9] I =[r Q] F=v Qv

(23)
0=My.+Qy =ML +TM)+Q — (Qr +T'Q).

Equations (23) have the—A pair L = [L,A]l, L = hQ +T, A = Q, which gives the
integrability only forn = 3. Fedorov and Kozlov suggested the hypothesis that the problem
is integrable for arbitrary.

Remark 4.2. We have the same number of integrals after the addition of a gyroscope to the
rigid body (thenM = ZQ + P). Also, as we did not use the relati@i®2 = JQ + QJ, all the
statements are valid for all operat@rsso(n) — so(n).

By the use of lemma 4.1, we can obtain analogous conservation laws for the other LR
systems (2) on six-dimensional algebgawith quadratic invariants which belong to the two
classes of algebrad and3, whose description can be found in [2]. The Lie algebt@@),
s0(3.1), 50(2.2), e(3), sI(2.R) & sl(2.R) etc, are in those classes.
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