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Abstract. Nonholonomic systems on Lie groups with a left-invariant Lagrangian and a right-
invariant nonintegrable distribution are studied. A method for construction of the first integrals is
given. It is applied to three-dimensional Lie groups and to the four-dimensional nonholonomic
rigid body motion. New integrable problems with an invariant measure are obtained.

0. Introduction

Some of the most interesting remarks about nonholonomic systems were given long ago by
Chaplygin. He noticed that some systems, although not Hamiltonian, had an invariant measure.
Then, if the phase space is foliated with the two-dimensional invariant manifolds, the equations
of motion can be integrated by quadratures according to the Jacobi theorem. Some of those
solvable systems are very close to the integrable Hamiltonian systems: the motion is unevenly
winding over the two-dimensional tori. The review of integrable examples can be found in
[1, 11].

In this paper, we are going to consider nonholonomic systems on Lie groups with a left-
invariant Lagrangian and a right-invariant nonholonomic distribution (LR systems) [7, 15]. In
section 1 we shall set the notation. A method for the construction of the integrals of an LR
system by using the invariants of the co-adjoint action is given in section 2. Both homogeneous
and nonhomogeneous constraints are considered. These results are used for the construction
of new integrable LR systems with an invariant measure on the three-dimensional groups in
section 3. In section 4, we consider the LR systems onSO(4). Explicit formulae are given
for the conservation laws of the four-dimensional nonholonomic rigid body motion.

Let us note that nonholonomic systems on Lie groups with left-invariant constraints also
appear in natural mechanical problems [7–9]. The equations of motion of a mechanical
nonholonomic system are not equivalent to the equations obtained from a nonholonomic
variational problem. The variational problems on Lie groups have been studied in [14].

1. Nonholonomic LR systems

The LR systems have been introduced in [15]. A descriptive and motivating example is the
Veselov–Veselova rigid body problem. Another important example is the Chaplygin problem
of the rolling of a balanced, dynamically asymmetric ball on a rough surface [4].

Example 1.1.The Veselov–Veselova problem represents the rotation of a rigid body fixed at
a point with the constraint〈 EN, E�〉 = 0 where E� is the angular velocity andEN is a constant
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8294 B Jovanovíc

vector in the fixed reference frame [15]. LetI be the inertia operator. The equations of motion
under inertia in body coordinates are

ĖM = EM × E� + λ EN ĖN = EN × E� 〈 EN, E�〉 = 0
λ = 〈 EN,A EN〉−1〈 EM × A EM,A EN〉 EM = I E� A = I−1.

(1)

The motion is unevenly winding over the two-dimensional invariant tori. Also, the integrability
remains even after addition of a symmetric gyroscope (thenEM = I E� + EP ) [15]. Fedorov
extended the integration of the equations (1) to the case of the nonhomogeneous constraint
〈 EN, E�〉 = q [6].

Definition 1.1. The LR system is the nonholonomic Lagrangian system(G,L,D) whereG is
then-dimensional Lie group,L is the left-invariant Lagrangian andD ⊂ TG is the right-
invariant (n− k)-dimensional nonintegrable distribution.

The distribution can be given by thek independent right-invariant one-formsαi ∈ 31(G)

in the following way:

Dg = {ξ ∈ TgG, (αig, ξ) = 0, (Rg)
∗αig = ni = const, i = 1, . . . , k < n}

where ( , ) denotes the pairing between theT ∗g G and TgG, and Rg denotes the right
multiplication with g, Rg(a) = ag, a ∈ G. The distribution is nonintegrable if and only
if [D,D] 6⊂ D, whereD = De.

The admissible paths satisfy, in general, nonhomogeneous right-invariant constraints
(αig, ġ) = qi = const. Ifg(t) is a smooth path inG, we introduce as usual�(t) = (Lg−1)∗ġ(t)a
smooth path in Lie algebraG = TeG andNi(t) = (Lg)∗αig(t) = Ad∗g−1n

i ∈ G∗. In this notation
the constraints become

(αig, ġ) = (αig, (Lg)∗�) = (ni, Adg�) = (Ni,�) = qi i = 1, . . . , k.

The equations of motion are derived fromthe d’Alembert–Lagrange principle

d

dt

∂L

∂ġ
− ∂L
∂g
=
∑

λiα
i
g (αig, ġ) = qi i = 1, . . . , k (2)

where the Lagrange multipliersλi are chosen such that(αig, ġ) = qi = const.
We shall take the Lagrangian as the sum of the kinetic energy and the gyroscopic term.

It can be written in the formL = 1
2(I�,�) + (P,�), whereP ∈ G∗ and I : G → G∗

is the symmetric positive definite operator which defines the left-invariant metric. Let
A = I−1 : G∗ → G andM = ∂L/∂� = I� + P .

The equations of motion are reduced to

Ṁ = ad∗�M +
∑

λiN
i

Ṅ i = ad∗�Ni

(Ni,�) = qi i = 1, . . . , k � = A(M − P).
(2′)

In particular, forG = SO(3) equations (2′) take the form (1).
Recall that a Lie groupG is calledunimodularif it has a two-side invariant measure. The

criterion for a group to be unimodular is that the structural constants of its Lie algebra satisfy
the equations

∑
k C

k
ik = 0 for all i. The Lie algebra is also calledunimodular.

The important characteristic of LR systems on unimodular groups is the existence of an
invariant measure. Then, equations (2′) have the invariant measureµ(N)dM dN1 . . .dNk,
whereµ(N) =

√
det(Ni, ANj) [16].
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2. The first integrals

In this section we shall consider the LR systems with one constraint:

(αg, ġ) = (N,�) = q [D,D] = G D = {2 ∈ G, (n,2) = 0}
in the presence of an additional force with potentialV = V (g). Then the Lagrangian
is L = 1

2(I�,�) + (P,�) − V (g). Suppose thatV is a Gn-invariant function, where
n = (Rg)

∗α = const andGn = {g ∈ G, Ad∗
g−1n = n}. ThenV (g) induces a well-

defined functionU(N) on the orbit of the co-adjoint actionO(n) ⊂ G∗: U(N) = V (g),
N = Ad∗

g−1n ∈ O(n). An example is the gravity potential in a rigid body motion.
If we considern as variable parameter,U(N) becomes the function onG∗. We shall use

such functions as potentials. In the spaceM = G∗{M} × G∗{N} the reduced equations of
motion take the following form [16]:

Ṁ = ad∗�M + ad∗dUN + λN
Ṅ = ad∗�N
(N,�) = q � = A(M − P)
λ = −(N,AN)−1(ad∗�M + ad∗dUN,AN).

(3)

The adding of the potential has no influence to the existence of an invariant measure. Detailed
derivations of equations (3) without constraint are given in [13]. These are the Euler–Poincaré
equations for the semidirect product of the groupG and its Lie algebraG.

We are interested in the construction of the integrals of equations (3). Recall that a function
J : G∗ → R is an invariant of co-adjoint action if it satisfies

(M, [dJ (M),2]) = 0 for all M ∈ G∗, 2 ∈ G. (4)

Lemma 2.1. If J : G∗ → R is an invariant onG∗, thenJ1(M,N) = J (N) is an integral
of equations (3). For the HamiltonianH(M,N) = 1

2(M − P,�) + U(N), we have
Ḣ = λ(N,�) = λq. It is preserved only when the constraint is homogeneous:q = 0.

Lemma 2.2. (i) Let J : G∗ → R be an invariant onG∗ of the formJ (M) = 8(M,M), where
8 is a symmetric 2-tensor. Then along the trajectories of the system (3) the following holds:

d

dt
8(M,N) = λ8(N,N).

(ii) If J is of the formJ (M) = (M, η), η ∈ G then
d

dt
(M, η) = λ(N, η).

Proof. Let (e1, . . . , en) be a base of the algebraG with structural constantsCkij : [ei, ej ] =
Ckij ek. Introducing the coordinatesMk = (M, ek), Nk = (N, ek), � = �kek, equations (3)
become

Ṁk = CijkMi�
j +CijkNi

∂U

∂Nj
+ λNk

Ṅk = CijkNi�j
Ni�

i = q �i = Aij (Mj − Pj ).
(3′)

The derivative of8(N,M) = 8ijNiMj along the trajectory is

d

dt
8(N,M) = CijkMi�

j8kgNg +CijkNi
∂U

∂Nj
8kgNg + λNk8

kgNg +CijkNi�
j8kgMg

= �j(Cijk8kg{MiNg +NiMg}) +
∂U

∂Nj
(Cijk8

kgNiNg) + λJ (N). (5)
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SinceJ (M) is an invariant, equation (4) gives∑
CijkMi

∂J

∂Mk

= 0 j = 1, . . . n. (4′)

From (4′) we get∑
Cijk8

kgMiMg = 0 j = 1, . . . n. (6)

The tensorMiMg is symmetric ini, g. Hence from (6) the sum
∑
Cijk8

kg has to be anti-
symmetric ini, g for all j = 1, . . . n. Then the first and the second sums in (5) are equal to
zero as products of a symmetric and an anti-symmetric tensor in indicesi, g.

In the second case, whenJ (M) = (M, η) = Mkη
k we have

d

dt
(M, η) = Cijkηk

{
Mi�

j +Ni
∂U

∂Nj

}
+ λNkη

k.

The equations (4′) giveCijkη
k = 0 for all i, j . This proves the second part of the lemma.�

From lemmas 2.1 and 2.2 we can get the following theorem.

Theorem 2.1. (i) Let J : G∗ → R be an invariant onG∗ of the formJ = 8(M,M), where8
is a symmetric 2-tensor. Then equations (3) have the first integrals

J1 = 8(N,N)
J2 = 8(N,N)( 1

2(M − P,�) +U(N))−8(M,N)(N,�).
In the case whenU(N) = 0 we have the four-degree polynomial integral

J3 = 8(M,M)8(N,N)−8(M,N)2.
(ii) If J is of the formJ = (M, η), η ∈ G then the integrals are

J1 = (N, η)
J2 = (N, η)( 1

2(M − P,�) +U(N))− (M, η)(N,�).

Remark 2.1. The conservation laws of the nonreduced system (2) can be obtained from the
nonholonomic Noether theorem [1, 3, 7].

Suppose thatV is aK-invariant function, whereK ⊂ G acts by left multiplication on
G. The infinitesimal generator of the action isvY (g) = (Rg)∗Y , whereY ∈ K = TeK.
The momentum of the system relative to the Lie groupK is, by definition, the mappingI:
TG→ K∗:

I(ġ, g| Y ) =
(
∂L

∂ġ
, vY (g)

)
=
(
(Rg)

∗ ∂L
∂ġ
, Y

)
= (Ad∗gM, Y ) M = I� + P.

Let K ′ ⊂ K be the maximal subgroup whose action is consistent with the constraints:
vY (g) ∈ Dg, g ∈ G, Y ∈ K′ = TeK

′. Then, we have(α(g), vY (g)) = (α(g), (Rg)∗Y ) =
(n, Y ) = 0, which implies thatK′ = K ∩ D. From the Noether theorem follows that
J (ġ, g) = (Ad∗gM)|K∩D is the integral of the system (2).
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3. LR systems on three-dimensional groups

Let us recall the well known classification of the three-dimensional unimodular Lie algebras.
Let (e1, e2, e3) be a base of such algebra. Then, up to an isomorphism, there are only the
following unimodular algebras (see, for example, [14]):

(i) the algebra of the 3× 3 skew-symmetric matricesso(3, R): [e1, e2] = e3, [e2, e3] = e1,
[e3, e1] = e2;

(ii) the algebra of the 2× 2 matrices with zero tracesl(2, R): [e1, e2] = −e3, [e1, e3] = 2e1,
[e2, e3] = −2e2;

(iii) the Heisenberg algebrah: [e1, e2] = e3, [e1, e3] = [e2, e3] = 0;
(iv) the commutative algebrat (3): [ei, ej ] = 0.

There are no nonintegrable right(left)-invariant distributions on the groups corresponding
to the commutative algebrat (3). So, the nonholonomic LR systems with an invariant measure
appear on three-dimensional groupsG in the cases (i), (ii) or (iii).

In [16] it was proved that in the six-dimensional phase spaceT ∗G the motion under
inertia with a homogeneous constraint acts over the two-dimensional invariant surfaces. It can
be solved by quadratures using the Jacobi theorem.

We shall consider the case of a nonhomogeneous constraint in the additional potential force
field (equations (3)). In the six-dimensional spaceM{M,N} we have an invariant measure
and the constraint(N,�) = q. Thus we need three integrals of motion for the complete
integrability of the system (3).

(i) G = so(3, R). LetU(N) = 0. From theorem 2.1 we get the well known integrals of
the equations (1) [6, 15]:

J1 = 〈 EN, EN〉
J2 = 1

2〈 EN, EN〉〈 EM − EP , E�〉 − 〈 EN, EM〉〈 EN, E�〉
J3 = 〈 EN, EN〉〈 EM, EM〉 − 〈 EM, EN〉2.

(7)

The integrable potential perturbations of the equations (1) were given in [5, 15].
(ii) G = sl(2, R). In the base (ii) the motion has the following form:

Ṁ1 = M3�
2 − 2M1�

3 +N3
∂U

∂N2
− 2N1

∂U

∂N3
+ λN1

Ṁ2 = 2M2�
3−M3�

1 + 2N2
∂U

∂N3
−N3

∂U

∂N1
+ λN2

Ṁ3 = 2M1�
1− 2M2�

2 + 2N1
∂U

∂N1
− 2N2

∂U

∂N2
+ λN3

Ṅ1 = N3�
2 − 2N1�

3

Ṅ2 = 2N2�
3−N3�

1

Ṅ3 = 2N1�
1− 2N2�

2

N1�
1 +N2�

2 +N3�
3 = q �i = Aij (Mj − Pj ).

(8)

An invariant of the co-adjoint action isJ (M) = 4M1M2 +M2
3. We always have two integrals

of equations (8):

J1 = 4N1N2 +N2
3

J2 = J1(N)(
1
2(M − P,�) +U(N))− (N,�)(2M2N1 + 2N2M1 +M3N3).

(9)

In the caseU(N) = 0, the problem is integrable. From theorem 2.1 we have the third integral

J3 = (4N1N2 +N2
3 )(4M1M2 +M2

3)− (2M2N1 + 2N2M1 +M3N3)
2. (10)
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The integrable potential perturbations can be found by the method from [5]. Looking for the
potentialsU(N) for which there exists an integral of the form̃J3 = J3 +V (N) we can get the
following theorem.

Theorem 3.1.Equations (8) are integrable for the potential

ε

2

(
4
N2

1

a2
+ 4
N2

2

a1
+
N2

3

a3

)
whereA = diag(a1, a2, a3) andP = 0. The third integral is

J̃3 = J3 + 4ε(4N1N2 +N2
3 )

(
N2

1

a2a3
+
N2

2

a1a3
+
N2

3

a1a2

)
whereJ3 is given by (10).

Remark 3.1. The function ε
2(4

N2
1
a2

+ 4N
2
2
a1

+ N2
3
a3
) is the analogue of the Klebsch–Tisserand

potential in a rigid body motion. With such a potential problem (8) is integrable even without
the nonholonomic constraint.

(iii) G = h. In the base (iii) equations (3) and integralsJ1 i J2 are:

Ṁ1 = −M3�
2 −N3

∂U

∂N2
+ λN1

Ṁ2 = M3�
1 +N3

∂U

∂N1
+ λN2

Ṁ3 = λN3

Ṅ1 = −N3�
2 Ṅ2 = N3�

1 Ṅ3 = 0
N1�

1 +N2�
2 +N3�

3 = q �i = Aij (Mj − Pj )

(11)

J1 = N3

J2 = N3(
1
2(M − P,�)) +U(N))−M3(N,�).

(12)

LetU(N) = 0. Contrary to the previous examples, theorem 2.1 does not give the third integral.
However, we have

d

dt
(N,AN) = 2N3(�

1A2iNi −�2A1iNi) (13)

d

dt
(N,�) = λ(N,AN) +M3(�

1A2iNi −�2A1iNi) = 0. (14)

From (13) and (14) usinġM3 = λN3 we obtain

(N,AN)−1 d

dt
(N,AN) + 2M−1

3

d

dt
M3 = d

dt
ln{M2

3(N,AN)} = 0. (15)

From (15) we get the third integral

J3 = M2
3(N,AN). (16)

Thus equations (11) can be solved by quadratures.
We shall give a sketch of the integration in the case of homogeneous constraint,P = 0

andA = diag(a1, a2, a3). Then equations (11) take the form

Ṁ1 = −a2M3M2 + λN1 Ṁ2 = a1M3M1 + λN2 Ṁ3 = λN3

Ṅ1 = −a2N3M2 Ṅ2 = a1N3M1 Ṅ3 = 0

a1N1M1 + a2N2M2 + a3N3M3 = 0.

(11′)
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The invariant surfaces
a1N1M1 + a2N2M2 + a3N3M3 = 0 N3 = n
M2

3(a1N
2
1 + a2N

2
2 + a3N

2
3 ) = g a1M

2
1 + a2M

2
2 + a3M

2
3 = h

(12′)

are diffeomorphic to a cylinderS1× R1.
We can introduce new variablesu andv by the formulae:u = a1N

2
1 + a2N

2
2 + a3N

2
3 , v =

M1N2−N1M2. From equations (11′) we obtain the equations foruandv: u̇ = 2a1a2v, v̇ = nh,
which can be easily solved. From the equation forM3 we haveṀ3 = −a1a2nv(t)M3/u(t).
Sinceu(t) andv(t) are known functions of time, we can getM3(t). Finally, from (12′) we can
findM(t) andN(t).

Also, we have the following generalization.

Theorem 3.2. If the potentialU(N) satisfies the equation

A2iNi∂U/∂N1 = A1iNi∂U/∂N2

then equations (11) are integrable. The third integral is given by (16).

An example of an integrable potential isU(N) = ε(N,AN).

4. The nonholonomic motion of a four-dimensional rigid body

In this section we shall find the conservation laws of the four-dimensional nonholonomic rigid
body motions. The configuration space of ann-dimensional rigid body fixed at a point isSO(n):
g ∈ SO(n)maps the frame attached to the body{e1 = (1, 0, . . . ,0)t , . . . , en = (0, . . . ,0, 1)t }
to the fixed frame{v1 = (v11, . . . , v1n)

t , . . . , vn = (vn1, . . . , vnn)
t } (g = (v1, . . . , vn)

t and
vi = gtei). The matrix�c = � = g−1ġ is the angular velocity of the body relative to the
moving frame, and�s = ġg−1 = g�g−1 is the angular velocity of the body in the fixed frame.

The orthonormal base with respect to the Killing form of the Lie algebraso(n)

〈�1, �2〉 = − 1
2 tr(�1�2)

consists of the matrices:{ei∧ej , 16 i < j 6 n}wherex∧y = x⊗y−y⊗x = xyt−yxt . The
Killing form allows the identificationso(n)∗ = so(n). With this identification the operation
ad∗ becomes the commutator of the algebra, taken with a minus sign.

Following [7], we shall consider the four-dimensional generalizations of the Veselov–
Veselova problem (1). Instead of the rotations about an axis in the three-dimensional case,
for the multidimensional rigid body motion we can consider rotations in the two-dimensional
planes. Let us note that we can see the matricesvi ∧ vj ∈ so(n) as oriented two-dimensional
planes inRn.

In (1) the projection of the angular velocityE� to the vector in the spaceEN is constant.
This implies that infinitesimal rotations of the body in the planeEN⊥ are constant. By analogy,
let the infinitesimal rotations of the body in the planesvi ∧ vj be fixed, wherevi ∧ vj (i < j)

belong to thek-dimensional subspaceV ⊂ so(4)
V = Span{vi ∧ vj , (i, j) ∈ V} V ⊂ {1, 2, 3, 4} × {1, 2, 3, 4} |V| = k.
The corresponding right-invariant nonholonomic constraints are

�sij = 〈ei ∧ ej ,�s〉 = 〈ei ∧ ej , g�g−1〉 = 〈vi ∧ vj ,�〉 = qij (i, j) ∈ V (17)

where we usedvi ∧ vj = gtei(gtej )t − gtej (gtei)t = g−1ei ∧ ejg. The equations of motion
(2′), after the identificationso(4)∗ = so(4), take the form:

d

dt
M = [M,�] +

∑
λij vi ∧ vj

d

dt
(vi ∧ vj ) = [vi ∧ vj ,�]

〈vi ∧ vj ,�〉 = qij (i, j) ∈ V

(18)
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whereM = I� is the angular momentum of the body in the moving frame. The inertia
operatorI has the formI� = J� + �J whereJ = diag(J1, J2, J3, J4) is the mass tensor
[7, 12].

In the case of a dynamically symmetric rigid body, the integrability follows
straightforwardly. From now on we shall suppose thatI 6= cIdso(4) (c = const).

There are two functionally independent invariants onso(4): I1(M) = 〈M,M〉, I2(M) =
〈R(M),M〉, where the operatorR : ei ∧ ej →

∑
rij,i ′j ′ei ′ ∧ ej ′ is defined byr12,34 = r34,12 =

r14,23 = r23,14 = 1, r13,24 = r24,13 = −1; the rest ofrij,i ′j ′ are equal to zero. In a similar way
as in section 2, we can prove the following lemma.

Lemma 4.1. Let8(M,M) be an invariant onG∗ (8 is symmetric 2-tensor) and letH(M) =
1
2(M −P,�) be the Hamiltonian, then for the equations (2′) we have the following relations:

(i) d
dt 8(N

i,Nj ) = 0
(ii) d

dt 8(M,M) = 2
∑

j λj8(M,N
j )

(iii) d
dt H (M) =

∑
j λj (N

j ,�) =∑ λjq
j

(iv) d
dt 8(M,N

i) =∑j λj8(N
j ,Ni).

From lemma 4.1 (i) we get the geometric integrals

Xij,i ′j ′ = 〈vi ∧ vj , vi ′ ∧ vj ′ 〉 Yij,i ′j ′ = 〈R(vi ∧ vj ), vi ′ ∧ vj ′ 〉 (i, j), (i ′, j ′) ∈ V.
(19)

We can takeXij,i ′j ′ = δij,i ′j ′ andYij,ij = rij,i ′j ′ .
Theorem 4.1. (i) Let V = V0⊕ V1⊕ V2, V1⊕ V2 = V ∩ R(V ), V2 = R(V1). The following
functions are integrals of the four-dimensional nonholonomic rigid body motion (18):

Zij = 〈R(M), vi ∧ vj 〉 vi ∧ vj ∈ V0

J1 = 〈M,�〉 − 2
∑

vi∧vj∈V
〈vi ∧ vj ,�〉〈vi ∧ vj ,M〉

J2 = 〈M,M〉 −
∑

vi∧vj∈V
(〈M, vi ∧ vj 〉)2

J3 = 〈R(M),M〉 + 〈M,M〉 −
∑

vi∧vj∈V0⊕V1

(〈R(M), vi ∧ vj 〉 + 〈M, vi ∧ vj 〉)2.

(20)

(ii) In the (6k + 6)-dimensional spaceso(4){M} ×(i,j)∈V so(4){vi ∧ vj } the invariant surface
given by the constraints (17) and integrals (19), (20):

Xij,i ′j ′ = δij,i ′j ′ Yij,ij = rij,i ′j ′ Zij = zij Ji = ji (21)

is five-dimensional.

Sketch of proof. The first part of the theorem follows from lemma 4.1 (ii)–(iv). For the second
part, a careful analyses should be done depending onk = dimV and dimV0.

Remark 4.1. The integrability of system (18) is an open problem. However, there are
integrable subsystems, similar to the three-dimensional problem (1).

Lemma 4.2. If the constraints (17) are homogeneous and for some(i0, j0) ∈ V the initial
conditions satisfy

Mkl = (vi0 ∧ vj0)kl = 0 (k, l) = (1, 4), (2, 4), (3, 4)
(vi ∧ vj )kl = 0 (k, l) = (1, 2), (1, 3), (2, 3) (i, j) ∈ V − {(i0, j0)}.

(22)

Then, the motion of the four-dimensional nonholonomic rigid body problem (18) is unevenly
winding over the invariant tori and could be integrated by quadratures.
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Proof. It could be proved that the submanifold given by (21), (22) is the two-dimensional
invariant surface of equations (18). Since the connected component of the invariant surface is
compact, and since forJ1 6= 0 equations (18) do not have a singularity on the invariant surface,
the lemma follows from the theorem about integration of the nonholonomic system with an
invariant measure (see [1]). �

Maybe, one of the possible ways of proving the complete integrability is the construction
of theL–A pair, as in the free rigid body motion [10]. The following crucial remark is due to
Kozlov and Fedorov [7]. Considering then-dimensional case, they wrote equations (18) with
V = VKF = {(i, j), 26 i < j 6 n}, in an equivalent commutative form:

Q̇ = [Q,�] 0̇ = [0,�] 0 = v1⊗ v1

Q = MV ⊥ +�V = (M0 + 0M) +�− (�0 + 0�).
(23)

Equations (23) have theL–A pair L̇ = [L,A], L = hQ + 0, A = �, which gives the
integrability only forn = 3. Fedorov and Kozlov suggested the hypothesis that the problem
is integrable for arbitraryn.

Remark 4.2. We have the same number of integrals after the addition of a gyroscope to the
rigid body (thenM = I� + P ). Also, as we did not use the relationI� = J� +�J , all the
statements are valid for all operatorsI: so(n)→ so(n).

By the use of lemma 4.1, we can obtain analogous conservation laws for the other LR
systems (2) on six-dimensional algebrasG with quadratic invariants which belong to the two
classes of algebrasA andB, whose description can be found in [2]. The Lie algebrasso(4),
so(3.1), so(2.2), e(3), sl(2.R)⊕ sl(2.R) etc, are in those classes.
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